Dynamics and Kinetics. Exercise 6

Problem 1

The reaction between hydrogen and bromine $H_2 + Br_2 \rightarrow 2HBr$ is an example of a chain reaction. It has a composite mechanism:

Initiation: $Br_2 \xrightarrow{k_1} 2Br$

Chain propagation: Br + H₂ $\xrightarrow{k_2}$ HBr + H; H + Br₂ $\xrightarrow{k_3}$ HBr + Br

Inhibition: $H + HBr \xrightarrow{k-2} H_2 + Br$

Termination: $2Br \xrightarrow{k-1} Br_2$

Use the steady-state approximation for intermediates Br and H to derive the overall rate expression:

$$v := -\frac{d[Br_2]}{dt} = \frac{k[H_2][Br_2]^{1/2}}{1 + \frac{m[HBr]}{[Br_2]}}$$

How are k and m related to the rate constants $k_1,k_{-1},...,k_3$?

Problem 2

Consider the *competitive* mechanism of inhibition of an enzymatic reaction discussed in lecture:

$$E + S + I \stackrel{K_{ES}}{\rightleftharpoons} ES \stackrel{k_2}{\Rightarrow} E + P$$

$$\updownarrow K_{EI}$$

$$EI$$

- Assume that the substrate and inhibitor are present in great excess of the enzyme, apply the steady-state treatment, and obtain the rate equation.
- Obtain an expression for the degree of inhibition ϵ , defined as:

$$\epsilon = \frac{v_0 - v}{v_0}$$

where v is the rate in the presence of inhibitor and v_0 is the rate in its absence.

Problem 3

Acetaldehyde has been proposed to decompose according to the following mechanism.

$$\begin{array}{c} \mathrm{CH_{3}CHO} \xrightarrow{k_{1}} \mathrm{CH_{3}} + \mathrm{CHO} \\ & \vdots \vdots \end{array} \tag{1}$$

$$\mathrm{CH_3} + \mathrm{CH_3}\mathrm{CHO} \xrightarrow{k_2} \mathrm{CH_4} + \mathrm{CH_3}\mathrm{CO} \tag{2}$$

$$CH_3CO \xrightarrow{k_3} CH_3 + CO$$
 (3)

$$2 \text{ CH}_3 \xrightarrow{k_4} \text{C}_2 \text{H}_6$$

$$\vdots \vdots \vdots \qquad (4)$$

- a) In this radical chain reaction, identify the initiation, propagation, and termination steps.
- b) Derive a rate law for the formation of CH₄ that contains only the concentration of the reactant [CH₃CHO]. Assume that all radical species are present only in low concentrations in order to make suitable approximations.